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The recent use of methods which may be termed “linearized block AD1 methods” or 
more generally “consistently split linearized block implicit” methods has been a significant 
development in the efficient and noniterative solution of certain systems of coupled nonlinear 
multidimensional partial differential equations. Some observations on their structure, 
derivation, and use are given. Consistently split linearized block implicit (LBI) methods are 
unified here and are related to the earlier scalar ADI schemes, as well as to existing iterative 
and noniterative methods for solving both systems of nonlinear algebraic equations, and 
systems of nonlinear ordinary differential equations (including those having multipoint 
boundary conditions). It is shown that the method used by Lindemuth and Killeen and that 
of Briley and McDonald (utilizing a two-dimensional Crank-Nicolson formulation) are both 
consistently split block implicit schemes which differ in principle only with regard to imple- 
mentation of the linearization technique. It is also observed that the first approximate 
factorization scheme of Beam and Warming utilizes a splitting due to D’Yakonov whose 
intermediate steps are inconsistent in the sense that they do not approximate the governing 
equations to within a truncation error which vanishes to some order for small At. Methods 
based on splittings which have inconsistent intermediate steps are placed in a separate 
category and are shown to present serious difficulties, which apparently have escaped 
notice, in treating derivative boundary conditions accurately. Although similar difficulties 
can arise in the transient with consistently split schemes, the consistent splitting normally 
provides one order of accuracy improvement. Zt is further demonstrated that the two-level 
version of the second and more recent “delta” form approximate factorization scheme of 
Warming and Beam and the earlier method of Briley and McDonald have identical linearized 
block implicit structures. Finally, further substantial gains in efficiency resulting from 
reducible block submatrices and the use of multiple time steps are described. 

INTRODUCTION 

In independent investigations, Lindemuth and Killeen [I] and Briley and McDonald 
[2] devised closely related schemes capable of obtaining numerical solutions to systems 
of nonlinear multidimensional partial differential equations (PDE’s). These schemes 
were applied to a two-dimensional magnetohydrodynamic problem [l ] and to the 
three-dimensional compressible Navier-Stokes equations [2, 41. McDonald and 
Briley also employed their method to compute three-dimensional viscous supersonic 
flow by forward marching integration [3]. The methods of [l-4] both combine a 
formal linearization technique (Taylor series expansion in time) and utilize AD1 
schemes originally formulated for scalar equations, in their natural extension as 
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consistently split block implicit schemes for linear systems of equations. The resu!t 
is a highly efftcient and stable noniterative method for solving nonlinear multidimen- 
sional systems of PDE’s, wherein the formal error due to linearization is no larger 
than that introduced by temporal discretization. The resulting algorithm requires 
solution of block tridiagonal systems (for example) as opposed to simple tridiagonal 
systems obtained for scalar equations. Beam and Warming [j-7] have also developed 
two related methods based on D’Yakonov’s approximate factorization approach. 
The first method [5] was derived for nonlinear systems of first-order equations in 
conservation-law form. In this special case, the method combines either standard or 
high-order “compact” PadC spatial difference formulas with a split “factored” 
algorithm. Warming and Beam [6-71 later reformulated this method as a “delta” 
form factorization and added second-order (viscous) terms. They also derived a 
three-level version of this latter method which is highly efficient in its storage utiliza- 
tion, requiring only two levels of storage even though it is a three-level scheme. 
Beam and Warming [7] have applied the “delta” form factored scheme to the two- 
dimensional compressible Navier-Stokes equations. In an early development, 
Gourlay and Morris [g] proposed block AD1 methods for nonlinear hyperbolic 
systems in either conservation or nonconservation form, utilizing a two-step explicit- 
predictor, block-ADl-corrector formulation to accomplish linearization. Considcra- 
tions of efficiency and coding complexity appear to favor one-step linearized block 
implicit methods over the predictor-corrector approach. Here, the methods of [ l--7 ] 
are considered specifically as linearized block implicit methods, and salient features 
of the different methods are discussed without a detailed formal derivation, as this 
would be lengthy, would tend to obscure the points being made, and in any event 
derivations are given in the cited references. Omitted here but considered in detail 
by other authors elsewhere are the topics of stability and error properties i5, 61, 
spatial differencing [5, 6, 91, special treatments for mixed derivatives [l: 6, 7]: choice 
of dependent variables, and other details which may vary from application to app!ica- 
tion. 

Systems of governing equations encountered in applications may contain (for 
example) terms such as d(O) ZF(+)/” (x, where & is a square matrix whose elcmenis 
are functions of 4, a column vector of dependent variables, and F is a column vector 
function of 4. The development of Lindemuth and Killccn [I] considers primarily 
the quasilinear form (F -e 4)); that of Briley and McDonald [24] treats conservative 
(& :-= I, the identity matrix), quasilincar, and mixed forms. Lindcmuth [9] gives a 
detailed treatment of spatial differencing techniques for both conservative and 
nonconservative forms. The development of Beam and Warming [j] considered 
first-order conservation forms and later [6, 71 conservation forms of mixed order 
were added. Here, we employ notation similar to that of Riley and McDonald E-l]. 
which formalizes the method first reported in [2], and use a diflerential-difference 
operator notation. The operator notation is quite general and permits the simuita.- 
ncous and unambiguous treatment of equations having either conservation (divcr- 
gence) form, quasilinear form, or various mixtures. Any one of these forms can have 
distinct advantages depending on the particular application. For example, for !he 
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special case of first-order hyperbolic systems in conservation form, Beam and 
Warming [.5] were able to utilize Pad6 fourth-order central and second-order one-sided 
spatial differences while retaining a block tridiagonal matrix structure. The recent 
operator-compact implicit differencing of Ciment, Leventhal, and Weinberg [IO] 
retains tridiagonal matrices in the presence of mixed-order derivatives and may be 
useful in more general circumstances. 

LINEARIZATION 

The technique of linearization by Taylor expansion used in [l-7] is well known as an 
integral part of the Newton-Raphson method (cf. Ralston [I 11) for iterative solution 
of systems of nonlinear algebraic equations. Keller [ 121 describes the use of Newton’s 
method for the iterative solution of nonlinear systems of first- and second-order 
ordinary differential equations (ODE’s) with two-point boundary conditions. 
Bellman and Kalaba [I 31 advocate the “quasilinearization” (Newton-Raphson) 
method for the iterative solution of implicit nonlinear difference approximations for 
PDE’s. A dillerent emphasis is present here and in [l-7], however, and that is to 
pose an initial value problem and linearize by Taylor expansion in time (or a timelike 
variable) rather than in some iteration space. 

The difference in viewpoint can be illustrated as follows: If as before, F(d) is a 
(nonlinear) vector function of the vector 9, and if tn denotes a discretized time variable 
such that At := tn+-l - tn, then the linearization of F+l in time is given by 

Fni-1 = Ffl -~.(~f'j~+)n(+"+l - $n)+ o(dtZ). 
(1) 

Note that one form (cf. Keller [12]) of the Newton-Raphson method (with iteration 
index n) for solving the system F(d) q = 0 is obtained by setting F"+l :: 0 in Eq. (1). 
On the other hand, if Eq. (1) is combined with the implicit time difference approxima- 
tion 

(+n:’ - @) = dt[fjF”i’ + (1 - p) F”] 

(centered about tn -I- /3 dt; 0 < /? < 1) for the system of ODE’s 

24/L% = F(4), 

the result is 

[Z/At - /3(SFj’:‘;+)“](qP+’ - P) = F” (4) 

and a stable noniterative implicit method for the system of ODE’s (3) (posed as an 
initial value problem) is obtained. The use of Eq. (4) requires solution of a linear 
system having a square matrix, at each time step. The noniterative scheme (4) falls 
within the general approach described by Lomax [14] for solution of “stiff” systems of 
ODE’s, where stiffness is associated with widely differing eigenvalues of the Jacobian 
matrix aF/Z+. Steady solutions of Eq. (4) also satisfy F(4) == 0, but the Newton- 
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Raphson method is obtained from Eq. (4) only in the limit as dt + cc, ,9 = 1. 
Alternatively, Newton-Raphson (or quasilinearization) iteration can be used to 
solve Eq. (2) directly, which leads to the recursive .ormula 

Note that the noniterative scheme (4) can be derived from Eq. (5) by taking @+” .= 4” 
and performing one iteration. 

The attraction of the noniterative time-linearization formulation as opposed to 
that of Newton-Raphson or quasilinearization is that it leads naturally to the foliow- 
ing observations: if transient accuracy is an objective in the solution of the system of 
ODE’s (3), then the errors arising from linearization as in Eq. (1) are expressed as 
temporal errors which may be compared with those of the temporal discretization (2). 
For example, it is easily shown (cf. McDonald and Briiey [3]) that for p .. 0.5 the 
scalar form of Eq. (2) approximates Eq. (3) with a local time truncation error Et oi 
order E, .= ---(ot)P(~:~~,~t3)i12, whereas an additional nonlinear truncation error 
E,,? is present in the linearized form Eq. (4) and is of locai order E:‘nl =:z (4t)Z(i’ZI; 
i.@)(i:&; r)“:4. Note that use of the linearization (1) does not lower the formal order 
of accuracy of the time discretization (2). Since each iteration of Eq. (5) generally 
requires at least as much effort as one time step using the noniterative scheme (4), 
the relative eficiency of the iterative and noniterative formulations can be clarified by 
comparing the reduction in composite error E, -1. EnL obtained under the foliowing 
alternatives: (a) perform two, three, or more iterations of Eq. (5), or instead (b) 
reduce the step size dt by a factor of two, three, or more and repeat the nonitcrative 
scheme (4) a corresponding number of times in the given time interval. This compari- 
son is shown in Table I. Note that for the same or less effort, reducing the step siLe 
LI; in Eq. (4) reduces both the linearization error and the temporal truncation error. 
and, although successive iterations of Eq. (5) are extremely effective in reducing the 
linearization error (assuming convergence), iteration leaves the temporal truncatio:> 
error unaffected. Consequently, it appears that one iteration of Eq. (5) will usually 
be optimum and the simpler noniterative formulation of Eq. (4) preferred. Evident!y, 
iteration can be more efficient than reducing the time step only in cases for which the 
linearization error is much larger than the temporal truncation error. From Table 3 

TABLE I 
Computational Effort to Reduce Error in Solution of Scaiar Form of Eq. (2) 

Noniterative scheme (4), fl = 3 Iterative Scheme (j), 3 = 3 
-. .-. .-. - ..-. - -..- .- __-._ -- ~_ ---_ ..- 

Time steps Step size Composite error Iterations Composite error 
-- -~~.. ~..~ -..--. ---. .-..--. -- 

1 Ai Et + Er., I E, -1 & 
2 ZAt 2 
3 fAt 

:vt -I- E,;,,) E, -:. 0(&,)2 

QC-5 i -Cd 3 E:I i O(En,Y‘ 
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for example, assuming (E,$ -+ 0 after two iterations, and further assuming Et and 
I?,, are additive rather than offsetting errors, then performing two time steps is still 
superior to iterating unless E,, is more than three times as large as Et. Nevertheless, 
it should be acknowledged that in some applications iteration may be desirable 
[Lindemuth, private communication]. Finally, it may be that the only objective in 
solving Eq. (3) is the steady solution I;(4) = 0. In such circumstances, each time step 
“iteration” computed using (4) is efficient, and although the quadratic convergence of 
the Newton-Raphson method (for “good” initial approximations) is recovered 
only as At -+ co, /I = 1, the time step is available as a free parameter which can be 
used (and even optimized) to both guarantee and accelerate convergence. 

It should be emphasized that in the case of ODE’s a wide variety of methods is 
available, including Runge-Kutta methods and various multistep iterated predictor- 
corrector methods (cf. [I 1, 151). Generally, implicit methods are preferred for “stiff” 
systems of ODE’s [14, 151. The situation with regard to available schemes is not so 
favorable for the more demanding systems of multidimensional PDE’s of primary 
interest here, however, and a noniterative time-dependent development analogous 
to that leading to Eq. (4) has considerable merit. Systems of parabohc-hyperbolic 
PDE’s can be considered simply by adding a homogeneous vector spatial differential- 
difference operator C@(4), which may be multidimensional, to Fin Eq. (2) and repeating 
steps analogous to Eqs. (l)-(4). F or example, in one spatial dimension x, if $9 has a 
quasilinear form such that 

then 9z+l= ~?@,(4~+l) can be linearized in time as follows 

If we denote the term in braces in Eq. (7) by the symbolic shorthand representation 
(B,/a+)%, then adding CBZ to Fin the time discretization (2) results in 

(p+l- 4’9 = MkW, + FY+l+ (1 - PWo + WI 
and linearizing in Eq. (1, 7) leads to 

[I - p .Lh(~~,/&b)s)” - p At(8F/;ja#](c$“+’ - 43 = dt(9, + F)“. (8’3 

If in addition, a/ax and a2/ax2 are replaced by standard three-point difference operators, 
then Eq. (Xb) becomes a noniterative method for systems of PDE’s in one space 
dimension. The matrix resulting from Eq. (8b) has a block banded form (bandwidth 
equal to the size of the spatial difference molecule), and can be solved efficiently by 
block elimination [15]. The scheme (8b) for PDE’s has generally the same desirable 
properties mentioned previously for scheme (4) for ODE’s. 
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It is further emphasized that the implicit scheme (8b) represents a stable and 
efficient solution procedure not only in the presence of “stiffness” associated with F. 
as for ODE’s, but also in the presence of perhaps analogous but more complex 
stiffness problems associated with the spatial operator 9x. In the former case, P; 
now amounts to a “nonlinear source term.” In the latter case of .Qz, it is noted that 
conditionally stable methods usually are subject to stability restrictions depending 
not only upon At, but also upon the spatial mesh increment Ax. In the case of com- 
pressible aerodynamics, for example, these correspond to the well-known Courant- 
Friedrichs-Levy (CFL) and viscous stability restrictions, which have the respective 
one-dimensional forms At < Ax/(, II I -{- c) and dr & (dx)‘:2v, where u is velocity, 
c is the speed of sound, and v is kinematic viscosity. It is noted that the CFL condition 
reflects dilferent eigenvalues having the physical interpretation of the convection speed 
if and the relative speed of propagation of sound waves, II - c. The scalar analog of 
rhe CFL condition is At -< Ax/l u I. The stability restriction on diffusion is inherently 
scalar. and since it involves (Ax)~, it is rather severe. Implicit methods have long been 
accepted as among the most efficient means for solving diffusion equations. Finally, 
it is noted that steady solutions of Eq. (8b) satisfy the system of ODE’s s,(4) T F .:.-. 
O1 which in this case may be subject to multipoint boundary conditions. Furthermore, 
in computing such steady solutions, stability and optimization of At arc important, 
but transient accuracy is irrelevant. 

The iterative use of linearization by Taylor’expansion for solving coupled PDE’s 
in one space dimension is well known. Keller’s [17] box scheme employs Newton 
iteration for implicit solution of coupled systems of first-order PDE’s in one space 
dimension and is widely used. Various successful implicit methods based on quasi- 
linearization for solving the two-dimensional boundary layer equations (cf. Blottner 
[1 S] and references: Rubin and Khosla [19]) can be thought of as iterative analogs of 
Eq. (8b). Apparently. one of the first uses of a noniterative formulation as exemplified 
by Eq. (8b) was that of Richtmyer and Morton [20]. who considered a scalar non- 
linear diffusion equation in one space dimension. More recently. Kreskovsky and 
Shamroth 1211 employed a slight generalization of Eq. (8b) to solve a reduced form 
of the two-dimensional Navier-Stokes equations by spatial forward marching inte- 
gration. The resulting numerical method is noteworthy in that third-order differential 
equations are treated, and the internal flow application results in augmented block 
(4 x 4) pentadiagonal matrices. The multidimensional application of the noniterative 
scheme typified by Eq. (8b) is one of the key elements of the linearized block implici: 
(LBT) schemes of [l-.7]. 

COWSFENTLY SPLIT LW'EAIIIZED BLOCK TMPLI~IT METHODS 

Multidimensional analogs of scheme (8b) can be derived by allowing .%j to be a 
multidimensional operator having, for example, the very general form 
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In this case, however, the resulting system of linear implicit difference equations is not 
easily solved. On the other hand, if (block) AD1 or other splitting techniques are 
introduced, narrow block-banded matrices can be recovered, and the result is a 
highly efficient and general class of implicit methods for systems of nonlinear multi- 
dimensional PDE’s. To the authors’ knowledge, the utility of the one-step noniterative 
implicit formulation for coupled nonlinear PDE’s, as in Eq. (Sb), and more impor- 
tantly its multidimensional generalization using block ADI techniques, was not 
recognized until applied independently by Lindemuth and Killeen [I] and Briley and 
McDonald [2]. Finally, it is noted that in the multidimensional case where D has a 
form such as Eq. (9), steady solutions satisfy g(4) + F = 0, which includes systems 
of nonlinear PDE’s of mixed parabolic, hyperbolic, and elliptic classification. In 
this latter case, the steady solution is very likely to be the only item of interest in 
applying the multidimensional analog of Eq. (8b); hence, considerations of temporal 
accuracy are unimportant and the high single step efficiency of the noniterative 
formulation assumes a greatly enhanced role. 

In deriving the multidimensional methods, use of the time linearization technique 
exemplified by Eqs. (1) and (7) at an appropriate point in the algorithm produces 
linear difference operators from nonlinear ones [4], as is necessary for efficient 
noniterative solution of implicit schemes. Viewed in this manner, implementation of 
the linearization can be discussed separately from the splitting techniques being used. 
As will be noted, Lindemuth and I&lleen [l] implemented the linearization in a 
manner slightly different from that of Briley and McDonald [Z]; however, we shall 
first unzyj the methods of [l-7] on the basis of their treatment of linear systems of 
equations, as this parallels existing AD1 literature. 

Consider an implicit difference scheme of the following form, which may be spatially 
nonlinear: 

(p+l - 4”) = otp, + csu + %IrPP+l + (1 - i%w (10) 

Here, ~3~) BW, gZ can represent either vector differential or vector difference operators 
associated with (for example) x, y , z coordinate directions. Although here as in most 
applications the component $3 operators are presumed associated with coordinate 
directions (hence the “alternating direction” terminology), it should be emphasized 
that the original ADI concept was generalized by Douglas and Gunn [22] to include 
any number of component operators which need not be associated with coordinate 
directions or even directions within the computational lattice. The key requirement 
for application of AD1 or splitting techniques in general is that component operators 
~3~ ($3 E xi S?J be identified whose associated matrices are “easily solved” [22]. As 
before, ,!3 permits a variable centering in time, and although multitime levels are 
easily accommodated in the development, a two-time-level scheme is supposed. 
Further, although a nonlinear time derivative such as alr($)/at is allowed for in the 
development given in [2-4], Eq. (10) is limited for simplicity to the linear case H = 4. 
Nevertheless, the generality afforded by retention of a time derivative term for which 
aH/a+ # Z is worth noting. The assumption N = 4 may require a particular form 
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for the governing equations and/or a particular choice of dependent variables. Finally, 
for the moment attention is restricted to the case in which the ?-operators are linear 
transformations and hence homogeneous. 

The derivation of block ADI schemes can proceed in several ways. The very general 
procedure of Douglas and Gunn [22] for derivin g ADI schemes as perturbations of 
fundamental implicit schemes was developed in a scalar context. Nevertheless. their 
technique for generating AD1 schemes employs linear operators and is thus applicabie 
to systems of equations. Consequently, the Douglas Gunn procedure was appiied 
by the authors [2-41 to (linearized) systems such as Eq. (IO), which may contain mixed 
parabolic and first-order hyperbolic forms. Here as in [2-41. the Douglas- Gun!: 

procedure is viewed as a general splitting tcchniquc whose intermediate steps have !he 
very desirable property of being consistent. The Douglas-Gunn splitting of Eiq. (‘IC) 
as employed in [2, 41 is given by 

Note that each successive step treats one more B-operator implicitly. Although 
Eqs. (1 1) are not in the form most desirable for coding purposes. the form of Eqs. (1 1) 
is a critical step in the Douglas-Gunn splitting process since it is apparent that each 
of the intermediate steps (I 1 a)-( I 1 c) is a consistent approximation of i’.q. (IO) and that 
each of the intermediate solutions i*, r#~**, +**% approximates 6” l. Thus if the 
original scheme (10) is consistent in the sense that it approximates the governing 
equations to within a truncation error which vanishes to some order for smali 3r. 
then each step in the split form (1 1) is also consistent. For coding purposes, Dougias 
and Gunn [22] recommend the following simplified form of tqs. (1 lb) and (! !cj 
obtained by subtracting (112) from (1 I b) and (1 lb) from (I Ic): 

4x= - 4” = ‘q&,(~** -- c&q. (ihj 

d+” < - 4*x = 4@Qz((#)*e -.. &e), (12b) 

i-or the purpose of analysis, Douglas and Gunn rewrite IYqs. (1 1 a). (I 2a), and ( 1%) as 

(I - 3 4f2’,)(rp - c#e) - 4f(G?2, L r?2?, - a,) +v. (i3a> 

(I - p LIt.G,,)(+** - 4”) 7 4” - p, (I 3b) 

(I- b 4fGz)(+*** - p> +** - p, (13c) 

@-LI = 4*x;-* -1 O(4f”). (!3d) 
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The present authors prefer to code in terms of Eqs. (13), solving for the temporal 
increment & = Cp - +“, primarily because of apparent improvement in round-off 
characteristics. Specifically, when all quantities except 9 are exact, the use of Eqs. (13) 
permits the computation of steady solutions to an arbitrary number of significant 
figures, whereas (11) and (12) are limited to significant figures carried by the computer 
minus those significant figures lost in the solution of block tridiagonal systems. The 
round-off errors are reduced by solving for 0(&) quantities such as the difference 
(+* - 4%) and correcting c$~, rather than solving directly for O(1) quantities such as 
4”. Nevertheless, Eqs. (ll)-(13) are just different forms of the same scheme. 

Eliminating the intermediate steps in Eqs. (13a)-(13d) results in 

(I - p Lit63,J(Z - p AE@,)(Z - p &s&p+1 - P) 

= 49, + SW + a,,) #J,” + wt3> (14) 

which is a combined form of the splitting (11) and (12) or (13) and also an approximate 
factorization of Eq. (lo), since upon multiplying the factors in Eq. (14) and noting 
that ~$~+r - #” = 0(dt) the result differs from Eq. (10) only by terms of U(&)3 or 
higher. A change in the sequence of steps from X, y, z to some other ordering such as 
y, z, x is equivalent to commuting the factors in Eq. (14). Although these factors are 
not in general commutative, the differences in the resulting schemes remain O(At)3. 

Lindemuth and Killeen [I] considered a problem in two space dimensions and for 
their system of PDE’s followed the procedure originally used by Peaceman and 
Rachford [23] to obtain the first (scalar) ADI scheme. Lindemuth and Killeen [l] were 
thus led to the following scheme: 

(z-+%)4 ( ** = z+++, Wb) 

4 n+1 = $b** + u(m). (15c) 

Note, however, that if the change of variables C$ = (+* + Cs)/2 is made in Eqs. (15) 
and if Eq. (15a) is subtracted from (15b), then Eqs. (15a) and (15b) can be written as 

(P ** - $p* = -!+&p** - p> (16b) 

which is a special case of Eqs. (1 la) and (12a), corresponding to p = +, BS = 0. Thus, 
as in the case of a scalar equation, the Peaceman-Rachford block ADI scheme for 
systems of equations is recovered in disguised form as the Douglas-Gunn splitting 
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of the two-dimensional Crank--Nicolson scheme. Scheme (11 j provides the unambigu- 
ous generalization of the consistently split Crank-Nicolson scheme to three space 
dimensions, a process which in the earlier development of scalar AD1 methods proved 
elusive. The general formulation of Douglas and Gunn [22] also includes as special 
casts carlicr scalar ADI schcmcs dcvclopcd by Douglas and Rachford (1956), Douglas 
(1961 j, and Douglas and Gunn (lY63), but does not include the scheme of D’Yakonov 
or the so-called LOD or fractional step schemes (cf. [24]). 

I.irwarizutiorr of the C&Operators 

Although quasilinear -Q-operators of a form such as Eq. (6) ayz not of suficient 

generality to cover many applications, the !&operators, if nonlinear, can be linearized 
by Taylor expansion in time as ncccssary [4]. In the construction of generalized 
algorithms, it is convenient to introduce a notation which represents a linearized 
approximation to g(@-+l) obtained by expansion in time about a (known) solution 
4” at some intermediate time level t* where t* :< r* Z< tn+r. The linearization is 
per-formed simply by computing the vector quantity [2~FP?(+))!at]*(t”-I-~ - t*j and 
replacing all occurrences of (2+il”t)*. arising from chain-rule diffcrcntiation, ‘by 

(4” l +*j/(t7L.l t*j.& in E qs. (7) and (8), the result can be denoted symbolically 
as (Z$!Z+)*(@‘;-t - +*), and the linearization formula is then given by 

q9” i-1) = g(p) + (a~/!@J)*(p~’ - p> i q&)2 (17j 

which is linear in +‘l r as desired. Linearization as in Eq. (17) is effectively performed 
foreach equation separately. The notation providessimplicity for ease inderivation and 
manipulation, and yet maintains considerable generality. 

As mcntioncd carlicr, thcrc is one notable difference between the methods of [i, 21 
regarding implementation of the linearization. Briley and McDonald [24] linearize 
the fundamental implicit scheme in the manner of (I), (7) and (17) and then apply the 
Douglas-Gunn splitting technique to generate a consistent!y split block implicit 
scheme for the purpose of “solving” the linearized multidimensional diffcrcncc 
equations. In this instance, the linearized scheme is the same as Eqs. (13) except that 
all G-operators appearing on the left-hand side of Eqs. (I 3) are replaced by (aB/2+)‘& 
as defined previously. The linearized scheme is thus given by 

in the special case where .Q is linear, the relationship 

(Zg!qfB)“(p+’ - p> = qp+1 - 4”) (19) 

!mlds and Eqs. (18) are seen to reduce to Eqs. (13). 
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On the other hand, Lindemuth and Killeen [I] constructed a nonlinear Peaceman- 
Rachford scheme and then linearized the AD1 scheme by Taylor series expansion 
about 4” during the step analogous to (15a), followed by expansion about C$ during 
the step analogous to (15b). In the present notation, the linearized extension of Eqs. 
(Isa) and (15b) used by Lindemuth and Killeen can be written as 

(2@d) 

As in the linear case, the relationship of Eqs. (18) and (20) is clarified under the change 
of variables $ = (+* + 99/2 and with /3 = 0.5, gZ = 0. Under these circumstances, 
Eqs. (18a) and (20a) for the first AD1 sweep are equivalent, but Eqs. (18b) and (20b) 
for the second AD1 sweep differ by the quantity 

q [(2& c+* - C”) - &($* + qbR) + 2gZ”d” 

which reduces to zero if 93 is linear and independent oft. 
Both techniques (18) and (20) are accurate to O(zlt)2, lead to identical steady solu- 

tions, and have been successful in numerous applications. Use of the updated lineari- 
zation technique as in Eq. (20b) may well reduce linearization errors. On the other 
hand, the use of updated expansions complicates the treatment of nonlinear boundary 
conditions, making it necessary to compute intermediate boundary values on lateral 
boundaries, which otherwise may not be needed. In addition, Eq. (18b) is less compli- 
cated and requires fewer arithmetic operations than Eq. (20b). Although thepeaceman- 
Rachford formulation is restricted to two space dimensions, the use of updated 
linearizations can be generalized to three dimensions and other AD1 schemes by using 
the Douglas-Gunn formulation (11) and expanding about the most recent intermediate 
solution available. Without enumerating the various options, it is noted that the 
resulting schemes with updated intermediate step linearizations have the same formal 
accuracy as Eqs. (18), but are not as simple. Although there is no particular evidence 
to support the conjecture, the use of updated linearizations in schemes derived from 
Eqs. (11) may also adversely affect stability, since Douglas and Gunn [22] noted that 
if they had used the most recent approximation in constructing their (linear) AD1 
schemes, then unconditional stability would be lost in three dimensions. The use 
of updated linearizations in conjunction with split schemes which have inconsistent 
intermediate steps is certainly not recommended, for reasons which will subsequently 
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become apparent. Finally, it is noted that the two-level version of the “delta” form 
factorization of Beam and Warming [6, 71 has the form of Eq. (14) in two dimen- 
sions, and the recommended computational form is the Douglas--Gunn splitting 
written in the form of Eq. (13). Since Warming and Beam [6, 71 and Briley and 
McDonald [2-41 both implement the time linearization as in Eqs. (18), these meth- 
ods are identical in their structure as linearized block ADI schemes. 

As a final note, for the case of nonlinear k2-operators, AD1 schemes such as Eqs. (11) 
or (15) can be solved directly using (one-dimensional) Newton-Raphson iteration. The 
resulting schemes might be termed “nonlinear block ADI methods,” and although 
they require correspondingly more computational effort per time step, they do elimi- 
nate linearization errors in transient solutions. The method of Baum and Ndefo [25] 
consists of a nonlinear two-dimensional Peaceman-Rachford scheme solved by 
quasilinear iteration using a banded (as opposed to block) linear solver and falls 
into this general category. 

SCHEMES HAVING IXCONSISTENT INTERMEDIATE STEPS 

It should be emphasized that the factored form (14) was derived [4] as a combined 
form of the block ADI scheme (11) and (12) or (13). It is possible to “reverse” the 
derivation and first obtain the factored form which is then split to produce an ADI 
scheme. The general approach of deriving schemes as split forms of difrerence schemes 
written in a factored form is termed approximate factorization and was originated 
and developed extensively by Yanenko and D’Yakonov [26]. Varga [27] expresses a 
variety of schemes for linear scalar equations in terms of PadC rational approximations 
for exponentials of matrices and derives the Peaceman-Rachford matrix in factored 
form as an approximate form of the Crank-Nicolson formula. Mitchell [24] identifies 
numerous scalar ADI and LOD schemes as split forms of implicit difference formulas 
in factored form. Beam and Warming [5-71 also follow the D’Yakonov type of deriva- 
tion to arrive at their approximate factorization methods. and for example, note that 
Fq. (14) is an approximate factorization of the implicit scheme (IO) and that Eq. (!4) 
can be split in the manner of D’Yakonov to yield the suggested computarionai form 
Eq. (13). Finally, Gourlay [28] has recently surveyed and categorized nurncrous 
splitting methods for linear scalar time-dependent PDE’s. 

In deriving algorithms by the D’Yakonov approach of creating split versions of 
“factored” implicit schemes, it should be noted that certain key features of the 
various algorithms are not discernable in the factored form but become evident only 
after splitting into a usable computational form, a process which in general is not 
unique. This is particularly evident if the general factored form Eq. (14), is rewritten as 

(I - p Llt9r)(z - )f3 Llm?,)(z - p b2z) w1 

:= (I - p LltO,)(Z - p dt.9J(Z - p A@,) 4” 

+ dt(9, + 9, -t .c!az) 4” -!- OW3). (22) 
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As an illustration, if the factored form given by Eq. (22) is restricted to two dimen- 
sions (~9~ - 0) and /3 :.. 4, then Eq. (22) can be rewritten as 

Equation (23) is the factored form originally used by Beam and Warming [5] to 
simplify the treatment of homogeneous functions in the compressible Euler equations. 
It is apparent from the previous discussion that Eq. (23) is also a combined form of the 
Peaceman-Rachford splitting (15). in their first method, Beam and Warming [5] 
employed the following alternative splitting of Eq. (23): 

ql+1 _ 
4 *** + O(Llt3) (244 

which upon combining Eqs. (24a) and (24b) is a splitting due to D’Yakonov (cf. 
Mitchell [24]). S’ mce each of Eqs. (24a)-(24c) contain either ~9~ or 9?, but not both, 
scheme (24) also bears a resemblance to locally one-dimensional (LOD) schemes. 
A more important property of this scheme is that the intermediate steps (24a) and 
(24b) do not satisfy the consistency condition mentioned previously. For example, 
whereas the combined scheme or factored form (23) approximates 

g = (9z + 9J 9 + O(dt”), (25) 

the intermediate solution +** obtained from Eq. (24b) approximates a solution of 

g = (%! + :c&> 4 + O(dt). (26) 

Thus, intermediate steps possess properties somewhat analogous to the well-known 
inconsistency of the Dufort-Frankel scheme (e.g., Richtmyer and Morton [20]). 
Specifically, the Dufort-Frankel scheme for approximating the scalar equation 
&/2f = 22~/Bx2 contains a truncation error term (dt/d~)~ &~,!2t2 and as a consequence 
represents its differential counterpart not as dt + 0 but only as dt/dx -+ 0. In the 
present case of Eq. (24b), it can be seen from Eq. (26) that +** does not represent a 
solution of Eq. (25) regardless of how dt + 0. This lack of consistency will now be 
demonstrated to have rather serious consequences for implementation of boundary 
conditions. 
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INTERMEDIATE BOUNDARY CONDITIONS 

Since the overall scheme (24) nevertheless approximates Eq. (2.5) the inconsistent 
intermediate step (24b) would not be of serious concern except that imp&it boundary 
conditions +** are required for solution of Eq. (24b). For Dirichlet problems, implicit 
boundary conditions for intermediate steps can be derived for all split schemes by 
recombining intermediate steps in reverse order (cf. Mitchell [24]). Following !his 
procedure, boundary conditions for 4 ** for use during the x-imphcit step. as required 
by Eq. (24b), are given by the third-order formula 

(27) 

Note that use of the “physical” boundary condition 4’L 1 as 4*.’ introduces an 
O(dt) error not present in the combined form (23). If transient accuracy is of interest, 
this implies an O(i) error in representing Z+/Zt. For Dirichlet problems, the use of the 
intermediate boundary condition (27) is merely an inconvenience. if derivative 
boundary conditions are prescribed, however, more serious problems can arise. 
For example, suppose %&+‘/?x --:f( I’, t) is prescribed as an s-implicrt boundary 
condition. Differentiation of Eq. (27) results in 

If .Q2,+ has a form such as c,i:+/l,y 1 c,ir*+;L~‘, where cl, c2 are scalar and either 
constants or independent of X, then E(9,,+)/Sx can be evaluated unull.ticui!e!: ad 
Eq. (28) becomes 

However, in the more common case wherein ga, has variable coeficients of some sor;. 
as in N(S) i.+i~.. or ?[b(,v)+]:i’y, where u and b arc scalars, the foregoing procedure 
breaks down due to the presence of terms such as a’i,@ ‘1/ijs, which are not known 
when needed by the algorithm. In such cases, a less satisfactory alternative is available. 
and that is to evaluate ,9,,@-~* numerically but to replace ++’ by “lagged” values +‘I. 
Since by Taylor’s theorem 6 11’ * = dn ..I O(At)? Eq. (28) becomes the second-order 
formula 

and time derivatives can at least be represented to first order. Evidently. the formal 
accuracy of the overall scheme can be maintained only by resorting to multilevei 
extrapolation or a predictor-corrector treatment. 
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The foregoing situation is precisely one order of accuracy improved with the 
Peaceman-Rachford splitting (15), since (consistent) intermediate boundary conditions 
for (Isa) are given by 

cp* = 2!!?’ + p .+. d’g (,., _ 
2 4 y F) + o(m). (31) 

Since (d”‘-r - $aT1) = O(dt), accuracy is the same for both function and derivative 
boundary conditions. The use of either 4n+1/2 or (4%11 $ +n)!(2 as 9* introduces 
only an O(dt”) error. Time derivatives are represented to O(dt). If %J,,+ can be evalu- 
ated analytically as in Eq. (29), then use of Eq. (31) retains the transient accuracy of 
the overall scheme. Otherwise, there is no reason to use anything other than “physical” 
boundary conditions. 

It should be emphasized that the Douglas-Gunn procedure for deriving split 
schemes lcads only to schemes such as (11-13) and (15) whose intermediate steps 
represent consistent solutions (provided the unsplit scheme is consistent) and which 
also satisfy 

c#J*, c$** C @f-l f 0(&y. (32) 

Furthermore, steady (stationary) solutions satisfy 

cp” = q)** _ #*** = pi-1 = 4”. (33) 

The D’Yakonov splitting (24) does not satisfy either Eq. (32) or (33). As a consequence 
of Eqs. (32) and (33), boundary conditions for @-!-l can be applied during intermediate 
steps of the Douglas-Gunn splitting without serious loss of transient accuracy and 
with no loss of accuracy in steady solutions. In contrast, failure to correct intermediate 

TABLE II 

Influence of Intermediate Boundary Condition Treatment on Error 

Error in @iat on Error in satisfying 
boundary, transient applications steady boundary conditions 

Type of Peaceman-Rachford D’Yakonov Peaceman-Rachford D’Yakonov 
boundary correction (1% (24) (15) (24 

~._. - ..---. .-- .-.. 
None-“physical” @AtI O(1) None Wt) 

conditions used 

Approximate 
as in Eq. (30) 

_ -. -. ..-.. 
Not applicable OP) Not applicable None 

Exact, as in Eqs. 
(27), (28), and (31) 
(if possible) 

O(At)a O(At)’ None None 
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boundary conditions using the D’Yakonov splitting (24) leads to a steady solution 
which depends on dt and which does not satisfy the boundary conditions by an 
amount proportional to dt. These results are summarized in Table 11. Although 
derivative and some other boundary conditions may preclude the use of exact formulas 
for boundary corrections such as Eq. (28), it may be possible to order the ADI steps 
such that the troublesome boundary conditions occur only on the last step, where 
boundary correction is unnecessary. Finally, consistent splitting is attractive in any 
application requiring accuracy of the intermediate steps (for example, if linearizations 
are updated). For the foregoing reasons, the Douglas---Gunn (consistent) splitting 
(1 l)-( 13) seems highly preferable to the D’Yakonov (inconsistent) splitting (24) as 
well as other inconsistent splittings such as that of LOD schemes. 

EFFICIENCY GAINS FROM REDUCIBLE BLOCK SUBMATRICES 

In almost all practical applications, linearization by Taylor expansion in time 
necessarily leads to implicitly coupled difference equations. In the multidimensional 
case, use of a splitting scheme reduces the implicitly coupled difference equations to a 
sequence of narrow block-banded systems (usually block-tridiagonal), as is of critical 
importance for the overall efficiency of the method. Generally, if there are L equations 
in I; dependent variables, block (L x L) submatrices are obtained. In many applica- 
tions, however, the (I, x L) submatrices are reducible (for a definition, see Varga 
[27]), and in such cases, further gains in efficiency are possible. In any block-banded 
system, if a11 (L x L) submatrices including boundmy conditions are reducible in the 
same manner, then that block (L x 1,) banded system can be solved as a sequence of 
irreducible block (li x &) banded systems, where Ci li :::: L (1 &: li .< L). This can 
result in a substantial reduction in arithmetic operations, since solution of a block 
tridiagonal system nominally requires (3N - 2)(L” I- L’) operations [16], where & 
is the number of diagonal blocks (i.e., L coupled equations along a row of N grid 
points). 

As an example, if after suitable permutation the (L x L) submatrices contain a 
(row/column) containing only zero off-diagonal entries, the (L x L) submatrices 
are reducible, and the particular variable(s) associated with those diagonal entries 
can be computed (in this case) by a scalar tridiagonal elimination (before/after) 
solution of the remaining variables. Briley and McDonald [2-4] exploited this property 
for the three-dimensional compressible Navier-Stokes equations and reduced the 
block (5 x 5)-tridiagonal systems to one block (3 x 3) and two scalar tridiagonal 
systems [i.e., L --= 5. I -= (3, 1, l)]. The partitioned submatrices have the following 
form: 
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where X denotes a nonzero entry, and the solution vector has an ordering such as 
(t;, ~0, p, U, T)T. The associated programming logic is not difficult. McDonald and 
Briley [3] also obtained L = 4; I = (3, 1) for steady three-dimensional adiabatic 
supersonic flow. 

When L becomes large, the effort required to solve block-banded systems is con- 
siderable, and the partitioning of reducible submatrices can easily become critical. 
As a further indication of what can be accomplished through reducible submatrices, 
Gibeling, McDonald, and Briley [29] have considered the three-dimensional compres- 
sible Navier-Stokes equations for reacting flow with “stiff” chemistry. If, for example, 
the chemistry considered is the formation of nitric oxide by the Zeldovitch mechanism 
[30], then five chemical species are introduced as a result of the two chemical reactions 
which occur. Since one of the species can be determined from an algebraic conserva- 
tion equation, only four species are effectively coupled with the five fluid dynamic 
variables; thus L =: 9. Nevertheless, on the first intermediate step of the splitting, 
the submatrices are reducible such that 1 = (7, I, 1). Since the chemistry coupling 
occurs only through a pointwise source term vector (analogous to F in Eq. (Sb)) which 
does not appear in the second and third steps of the Douglas-Gunn splitting, further 
reduction is possible. In particular, if on the second and third steps, the species change 
contribution to the pressure gradient is neglected (an excellent assumption in many 
chemistry problems) the submatrices are then reducible such that I = (3, 1, 1, 4) 
with another major gain in efficiency. 

As a further observation, once the block submatrices have been partitioned into an 
irreducible form, nonzero elements which are small [O(E)] compared with other 
remaining elements (but which prevent further formal reduction of the submatrices) 
may be identified. If the consistently split block implicit scheme given by Eqs. (13) is 
being used, then it is obvious that neglecting any such O(E) element is equivalent to 
explicit evaluation of the corresponding term or terms in the governing equations, 
that is, evaluating these terms at t n rather than at tn !- /3 d t. Neglect of such O(C) sub- 
matrix elements may be termed “order epsilon decoupling” and may be desirable if it 
permits further reduction of the submatrices. Of course, the explicit evaluation of 
such terms raises the prospect of reduced stability bounds, and hence this concept must 
be used judiciously. Nevertheless, it seems well worthwhile to weigh the trade-offs 
involved. With this in mind, we return to the example of the Zeldovitch formation of 
nitric oxide and note that the chemical reactions are essentially isoenergetic and that, 
apart from the principle constituent species (which are virtually constant), all other 
varying species are present only in trace quantities. As a consequence, submatrices 
can be reduced such that I = (3, 1, I, 4) for all three split steps. Furthermore, if the 
transient behavior is of no interest, then the Ii I blocks may be solved only once after 
the fluid dynamic steady state has been achieved. For the foregoing reasons, linearized 
block implicit methods are particularly well suited for chemically reacting flows 
having “stiff” chemical reactions, provided they are consistently split. In this same 
environment, for a model time-dependent stiff reaction-diffusion equation in one 
space dimension, Dwyer and Otey [31] found the linearized block implicit scheme 
very effective, although for their system reducible subblocks were not investigated. 
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More recently, Steger [32] has further explored benefits associated with reducib!e 
block submatrices and has obtained L = 4; I = (2, 1, 1) for the two-dimensionai 
compressible Euler equations. 

THE USE OF MULTIPLE TIME STEPS 

The use of time-dependent schemes to obtain steady solutions for complex systems 
of elliptic or mixed type is well known and, at least in fluid dynamics applications, is 
probably more common than their use for computing accurate transients. in such 
circumstances, an emphasis on order of accuracy of the transient is unwarranted, and 
the availability of the time step as a fret parameter which can be used to improve Ihe 
rate of convergence to a steady solution is more relevant. In their consideration of a 
scalar diffusion equation, Peaceman and Rachford [23] showed that the cyclic use of a 
sequence of acceleration parameters (or equivalently time steps) of differing magni- 
tude provides rapid convergence using their ADI method. The efiectiveness oi‘ 
parameter cycling in accelerating convergence, particularly for refined meshes. is 
further demonstrated for model problems in a survey article by Birkhoff, Varga. and 
Young [33]. Although rigorous extension of the associated analysis to complex systems 
of nonlinear equations is far from straightforward, the underlying concepts can 
provide practical guidance in choosing time steps. Based on Peaceman and Rachford’s 
[23] observations, it might be expected that the use of a small time step (large acceiera- 
tion parameter p; p -C II’/~ At) would be effective in reducing errors having a small 
spatial wavelength, whereas a large time step (small parameter) would tend io reduce 
errors of large wavelength more effectively. Thus in iterating toward a steady solution. 
rather than use as iarge a time step as possible, or even attempt to determine an 
optimum time step, one should perhaps use a sequence of time steps distributed 
throughout the range of time scales present in the problem being solved. For example. 
in Ihe scalar diffusion equation l@i:t - iz+lc;̂ x2, a suitable minimum time step would 

be the explicit stability limit dt,i, -.. d-x2:2 and a suitable maximum would be the 
time required for diffusion to span the entire computational domain,dt,,, -A (L\r~,~)“,‘4. 
where AT is the number of mesh increments. In this particular case, these time scales are 
known to correspond to reasonable bounds on the eigenvalue range from which the 
theoretical acceleration parameter sequences are se&ted (cf. [33]). The utility of’ 
considering relevant time scales is simply that in complex applications the user often 
has a much better understanding of the time scales present in his particular problem 
than he does of the eigenvalues of matrices associated with the numerical scheme. 1!1 
fluid dynamics applications, the present authors have used this technique for selectinp 
sequences of time steps on a number of problems with apparent success in reducing 
the number of time steps to reach steady state. Tn support of these general arguments., 
it has been found that during various stages of the ireration process, the largest 
changes in the dependent variables often occur when taking the smallest time step. 
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SUMMARY ASD CONCLUDING RE~MARK~ 

“Linearized block implicit” methods have been unified and briefly related to scalar 
ADI schemes as well as to iterative and noniterative methods for systems of nonlinear 
algebraic and differential equations. Methods based on the D’Yakonov or other 
splittings whose intermediate steps do not satisfy the consistency condition were 
found to present difficulties in treating boundary conditions, particularly derivative 
conditions. Substantial gains in eficiency, obtainable when block submatrices are 
reducible, were described. Regarding the derivation of split linearized block implicit 
schemes, it is noted that the development of Beam and Warming places an emphasis 
on the factored or combined form rather than on the split scheme actually used in 
computations. Since the splitting process is not unique, key features of the various 
algorithms are not discernable in the factored form and, as demonstrated here, become 
evident only after splitting. Further, the restriction that a scheme be factorable might 
eliminate from consideration potentially useful schemes. Here, an emphasis is placed 
on the consistency of intermediate steps obtained through use of the Douglas-Gunn 
procedure for deriving split schemes, in view of its implications for treating boundary 
conditions. Thus, in the view of the present authors, the “factored forms,” Eqs. (14), 
(22), and (23) are all equivalent combined forms of the split schemes Eqs. (11)-(13), 
(15), and (16) which in turn are minor variations of the Douglas-Gunn [22] (consistent) 
splitting technique; whereas, the D’Yakonov (inconsistent) splitting (24) of the factored 
form (23) produces a method with entirely different properties. Finally, an alternative 
D’Yakonov type splitting of the “delta” factored form, Eq. (14), as proposed by 
Warming and Beam, is shown here to rederive the Douglas-Gunn splitting, Eq. (13). 

REFEREKCES 

I. 1. LI~DEMUTH AND J. KILLEEN, J. Comprrtnrional Phys. 13 (1973), 181. 
2. W. R. BRILEY ASD H. MCDONALD, Solution of the three-dimensional compressible Navier- 

Stokes equations by an implicit technique, in ‘*Proceedings Fourth International Conference on 
Numerical Methods in Fluid Dynamics, Boulder, Color. June 1974,” Springer-Verlag, New 
York/Berlin, 1975; also, United Aircraft Research Laboratories Report M911363-6, 1973. 

3. H. MCI)ONAI.D AND W. R. BRIL.EY, .I. Cunzp~~tational Phys. 19 (1975), 150; also, United Aircraft 
Research Laboratories Report NlllO78-I, 1974. 

4. W. R. BRILEY AXD H. MCDONALD, J. Comprr~ationul Phys. 24 (1977), 372: also, United Tech- 
nologies Research Center Report R75-911363-15, 1976. 

5. R. M. BEAM AND R. F. WARMIIVG, J. Computational Phys. 22 (1976), 87. 
6. R. F. WARMING AND R. M. BEAM, “On the Construction and Application of Implicit Factored 

Schemes for Conservation Laws,” Symposium on Computational Fluid Dynamics, New York, 
April 1977; SIAN-AMS Proceedings, Vol. II, 1977. 

7. R. M. BEAM AND R. F. WARMING, AIAA J. 16 (1978), 393. 
8. A. R. GOURLAY AND J. L. MORRIS, Mat/z. Cun~p. 22 (1968), 28. 
9. I. R. LINDEMUTH, J. Compuiafional Phys. 18 (l975), 119; Erratum, 19 (1976), 338. 

10. M. CIMENT, H. LEVENTHAL, AND B. C. WEINBERG, J. Compurafional Phys. 28 (1978), 135. 
I I. A. RALSTON, “A First Course in Numerical Analysis,” McGraw-Hill, New York, 1965. 



LINEARIZED BLOCK IMPLICIT METHODS 73 

12. H. B. K~LLLR, “Numerical Methods for Two-Point Boundary Value Problems,” Ginn!BIaisdcll, 
Waltham, Mass., 1968. 

13. R. E. B~LL\IAN AE;D R. E. KALARA, “Quasilinearization and Nonlinear Boundary Value 
Problems,” American Elsevicr, New York, 1965. 

!4. H. LOMAX, Stable implicit and explicit numerical methods for integrating quasi-linear differential 
equations with parasitic-stiff and parasitic-saddle eigenvalues, NASA TN D-4703, 1968. 

15. L. LrU’lDU ATiI> J. H. SEINFELD, “Numerical Solution of Ordinary DiffercntiaI Equations.“ 
Academic Press, New York, 1971. 

iG. E. ISAACSOU ASD H. B. KELLEK, “Analysis of Numerical Methods,” Wiley, New York, 1966. 
!7. H. 13. KELLFR. A New Difference Scheme for Parabolic Problems, in “Numerical Solution of 

Partial Differential Equations,” (J. Bramble Ed.), Vol. 2, Academic Press, New York. 1970. 
18. F. G. BLO’ITS~K. Comput. Methods Ap~)l. Me&. Engrg. 6 (1975), I. 
19. S. G. Ruatx ANo P. K. KHOSLA, Computers and Fluids 5 (1977), 241. 
20. K. D. RICH-~X~YEK AYD K. W. MORTON, “Difference Methods for Initial Value Problems,” 2nd 

ed.. Interscience, New York, 1967. 
21. J. I’. KKLSKOVSKY .AIGD S. J. SHAhmow, Complcl. Mt;hods AppL Mech. Engrg. 13 (1978), 307. 
22. J. DOIXLAS ASD J. E. GLJNN, Nurner. Ma/h. 6 (19&l), 428. 
23. D. W. Pt~c~s1.4~ IUD H. H. RACHFOKD, J. Sot. Indust. Appl. Math. 3 (1955), 28. 
24. A. R. MI~CIIEI.L. “Computational Methods in Partial Difrcrential Equations,” Wiley, New 

York, 1969. 
25. Li. BAUX~ ,\\n E. KDEFO. Proceedings of the AIAA Computational Fiuid Dynamics Conference, 

New York, 1973. p. 133. 
26. N. N. Y,~YL\~;o, “The Method of Fractional Steps,” Springer-Verlag, New York/Berlin, 197!. 
27. R. S. VARG.~. “Matrix Iterative Analysis,” Prentice-Hali, Englcwood Cliffs, N.J.. 1962. 
28. A. R. C;OCRI.AY, Splitting Methods for Time-Dependent Partial Differential Equations, in “The 

State of the Art in Numerical Analysis” (D. Jacobs, Ed.), p. 757. Academic Press, London. 
1977. 

29. H. J. GIHFLI~~~ H. MCDONALD, AND W. R. BRIL~Y, Development of a three-dimensional co:n- 
bustor no\\, analysis, Vol. I, Air Force Aero Propulsion Laboratory Report AFAPI.-TR-75-59. 
1975. 

30. YA. B. Zr:~uovrrc~. P. YASADOUNIKOV, AND D.A. FRASK-KAUENETSKI.L,“O~~~~~~~~ of Nitrogen 
in Combustion.” Academy of Sciences of USSR, Institute of Chemical Physics, 1947. 

31. H. DRYER A\~I G. OTCY, A numerical study of the interaction of fast chemistry and diff‘usion. 
AlAA Paper 78-946, 1978. 

32. .!. L. STCGFR, Conlpur. Methods Appl. Mech. Engrg. 13 (1978), 175. 
33. 6. BIKKHOFF, R. S. VARGA, ASD D. YOUXC;, Alternating Direction Implicit Methods, in “Ad- 

vances in Computers.” Vol. 3, Academic Press, New York, 1962. 


